If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+4+42
We move all terms to the left:
-(-16Y^2+4+42)=0
We get rid of parentheses
16Y^2-4-42=0
We add all the numbers together, and all the variables
16Y^2-46=0
a = 16; b = 0; c = -46;
Δ = b2-4ac
Δ = 02-4·16·(-46)
Δ = 2944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2944}=\sqrt{64*46}=\sqrt{64}*\sqrt{46}=8\sqrt{46}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{46}}{2*16}=\frac{0-8\sqrt{46}}{32} =-\frac{8\sqrt{46}}{32} =-\frac{\sqrt{46}}{4} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{46}}{2*16}=\frac{0+8\sqrt{46}}{32} =\frac{8\sqrt{46}}{32} =\frac{\sqrt{46}}{4} $
| 11x2-4x+52=0 | | -16t^2+272t=0 | | -15=-7+4y | | (5x-7)-(2x+3)6x+11=83 | | 6-8x=-6x-9x-29 | | 12x2+35x+123=0 | | 9x+10-10=4-2x-10 | | -8s+3-4=21 | | 12x2+35x+109=0 | | 9k+2k=23 | | 7x+4x-18=36-7x | | (1÷4x)+10=2 | | 58=x+7x-6 | | 7x+4-18=36-7x | | -4x+3(5x+6=7(2x+1-3x | | 4k^2-12k-11=0 | | 6(7r-5)=-28-9r | | -3x+9-2x=49 | | 6+3x+x=-42 | | 91=24+35+4d | | 4g=10=2g+14 | | 4x-1-5x=9 | | -22=8(7c-6) | | 30=2x-3 | | 33=-5+8(a+9) | | 100x^2-4/25=0 | | 30=x+2x+9 | | -31+2f=-6(3f-4) | | 3x²+11x-7=0 | | 40x+23=5(7x+5)+5x-2 | | 24=x+1+x+1 | | 3(2z+4)=-24 |